

Symbiotic Convergence of M2M Wireless Communications and the 5G

Convergencia de las comunicaciones inalámbricas M2M y la 5G

Proyectos RETOS TEC2015-71303-R

D1.1

5G Requirements for M2M

D1.1 5G Requirements for M2M

Document Properties

Document Number:	D1.1				
Document title:	5G Requirements for M2M				
Document Responsible:	Ferran Adelantado				
Document authors:	Ferran Adelantado, Xavier Vilajosana				
Security:	Public				
Date:	30-07-2016				
Status:	Final				

D1.1 5G Requirements for M2M

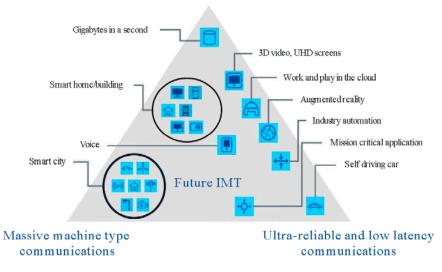
Executive Summary

The current and the future envisaged explosion of M2M communications within the framework of the IoT has opened up new market opportunities. However, this positive context has encouraged countless initiatives to define new standards (3GPP and non-3GPP standards) for this appealing market niche, thereby fragmenting the IoT technologies ecosystem.

In this deliverable, a compilation of use cases and potential requirements defined by 3GPP has been established as the basis of the SINERGIA project.

Table of Contents

1.	Introduction	5
2.	3GPP Use cases and Potential Requirements	8
3.	List of Acronyms	11
4.	References	11


1. Introduction

The envisaged increase of the cellular traffic, which according to [1] is expected to reach 30.6 exabytes per month by 2020 at a compound annual growth rate (CAGR) of 53%, imposes new capacity challenges to the fifth generation (5G) cellular networks. Specifically, this ever-increasing trend in data traffic demand will force 5G networks to meet a 1000xcapacity increase, densities of up to 1 million devices/km2 and latency below 1msec, mainly based upon three pillars: the improvement of the spectral efficiency, the allocation of new spectrum bands, and the densification of the Radio Access Network (RAN) [2]. In order to better define the envisaged scenarios and their associated requirements, ITU-R and 3GPP have recently defined three families of usage scenarios for 5G1 [3]:

- i) enhanced Mobile BroadBand (eMBB)
- ii) massive Machine Type Communications (mMTC)
- iii)Ultra-Reliable and Low Latency Communications (URLLC)

This classification of scenarios is often illustrated with Figure 1, where each vertex defines one of the three families of usage scenarios and where specific use cases are located according to their requirements.

¹ According to ITU terminology, 5G can be also denoted by IMT 2020 and beyond

Enhanced mobile broadband

Figure 1. Usage scenarios of IMT for 2020 and beyond [4].

Based on ITU-R definitions [4], eMBB addresses human-centric communications, with a clear focus on multimedia content delivery, high data rates and little energy consumption constraints. This family of scenarios is basically aimed to capture the increasing demand for high data rate services, especially in urban hotspots with low mobility. In the opposite side of the picture in terms of required data rate, mMTC poses the need for extremely dense deployments of devices with limited computational capability, strict energy consumption requirements, low volumes of transmitted data and relaxed latency bounds. However, these scenarios will have to provide massive connectivity services to 1 million devices per km2. Finally, URLLC encompasses use cases with stringent requirements of latency, reliability or availability. Use cases such as industrial control loops, transportation safety, etc are grouped under the coverage of URLLC.

Also in [4], ITU-R identifies the set of capabilities required in each of the usage families, which are summarized in Figure 2.

SINERGIA D1.1 5G Requirements for M2M

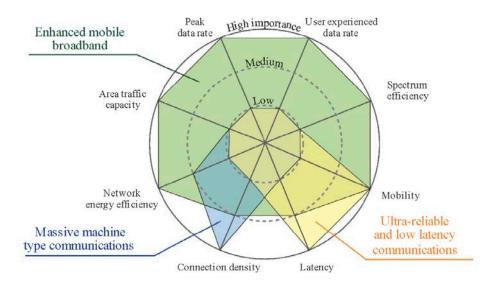


Figure 2. Key capabilities for 5G use cases [4].

According to the definitions and Figure 2, the classification of usage families defined by ITU-R clearly shows how the potential market niche has shifted from human type communications, tightly coupled with eMBB, to Machine-Type-Communications (also known as M2M), more connected to mMTC and URLLC. This paradigm shift has been mainly fuelled by the irruption of the so-called Internet-of-Things (IoT), which in turn has fostered the interest for IoT enabling technologies. For this reason, mMTC is also known as Massive IoT and URLLC as Critical IoT [5].

Although 3GPP is developing three different standards to address the IoT ecosystem (i.e. LTE-M, EC-GPRS and NB-IoT [5]), it will have to compete with diverse existing technologies developed under the aegis of International Alliances, IEEE, private companies, etc. A good example of the aforementioned diversity can be found in [6], where an outstanding classification of IoT technologies is surveyed. Table 1 shows the most prominent standards classified based on the coverage area and identified by Keysight Technologies in [6]:

Coverage Area	Technology			
Cellular Wireless Wide Area	LTE MTC Cat 0; LTE eMTC			
Networks	Cat M; EC-GPRS			
Low Power Wide Area	NB-IoT ; LoRaWAN;			
Networks	SigFox; Telensa; Ingenu;			
INELWOIKS	PTC; Weightless-W/N/P			
Wireless Neighbourhood	ZigBee NAN, Wi-SUN;			
Area Network	Wireless M-Bus			
	WiFi; WiGig; WiFi HaLow;			
Wireless Local Area Network	WiFi WAVE; TV White			
	Space			
Wireless Field Area Network	Wireless HART; ISA			
Wileless Field Alea Network	100.11a			
Wireless Home Area Network	ZigBee; Thread; Z-Wave;			
Wileless Home Alea Network	EnOcean			
Wireless Personal Area	Bluetooth; ANR+; MiWi			
Network				
Proximity	NFC			

Table 1. Summary of IoT technologies [6].

The convergence of such a wide range of technologies will definitely require efforts to harmonize the diverse standards (when possible) and exploit their potentials and complementarities to tailor the future ubiquitous 5G connectivity. As the SINERGIA project is mainly focused on attaining the convergence of M2M technologies in the framework of 5G networks, in the following sections a summary of requirements for 5G M2M use cases.

2. 3GPP Use cases and Potential Requirements

Organizations like 3GPP, NGMN, 5GPPP, etc have proposed an extensive set of envisaged use cases and the corresponding potential requirements for M2M in the framework 5G networks. These use cases have been detailed in [7] as a compilation of existing works. In the following, Table 2 shows a summary of the subset of use cases and requirements in which M2M communications are significantly involved. Table 2 has been extracted from [7].

Security: Public

Page 8

D1.1 5G Requirements for M2M

Group of Use cases	Data Rate	Latency	Reliability	Comm. efficiency	Traffic density	Conn. density	Mobility	Position accuracy	Remarks
Critical communi cations		Realtime low latency (e.g. as low as 1 ms end-to- end; the case "Smart grid system": less than 8 ms, Round trip latency less than [150 ms], low latency (~1 ms), UE-UE latency: low latency [1- 10 ms], 0.5ms one-way delay, Round trip latency less than [150 ms],	Ultra high Reliability, high availability (e.g. limit the duration of service interruption for mission critical traffic, Packet loss rate: as low as 1e-04; delivered in 8 ms, Reliability with Priority, Precedence, Preemption (PPP) mechanisms)		high density distributio n (e.g. 10k sensor /10sqkm)			Precise position within [10 cm] in densely populated areas.	Characterised by low latency, ultra high reliability
Massive IoT				Coverage enhancemen t, Efficient resource and signalling to support low power,	High density massive connectio ns (e.g.1 million connectio	Low mobility (for majority of MTC cases except for		High positioning accuracy in both outdoor and indoor scenarios (e.g., 0.5m)	Difference with CC is: No low Latency

Table 2. Subset of use cases and requirements extracted from table 6.3.2 of [7] in which M2M communications ply a significant role.

Security: Public

Page 9

SINERGIA D1.1 5G Requirements for M2M

				support	ns per	inventory)			
				devices	square	,,			
				(e.g., smart	kilometre),				
				meter) with	to accept				
				limited	informatio				
				communicati	n from				
				on	large				
				requirements	numbers				
				and	of locally				
				capabilities	dense				
					devices,				
					possibly				
					simultane				
					ously				
						Medium			
						connection			
						Density	High		
						(e.g. the	mobility(e.		
						number of	g. up to		
		Low				vehicles	500 KM/h,		V2X differs from
	Medium	latency	High			can .	absolute	High	eMBB due to its
Enhance	Rate (10 of	(e.g. 1	Reliability		Medium	exceed	speed	positioning	high reliability ,
V2X	Mbps per	millisecon	(nearly		traffic	10000 in	more than	accuracy	lower rate , high
	device)	d end-to- end	100%)		density	scenarios with	200 km/h while	(e.g. 0.1	speed and high
		latency)					relative	meters)	positioning
		latericy)				multiple lanes and	speed		accuracy
						multiple	more than		
						levels and	400 km/h).		
						types of	100 ((1)/1).		
						roads)			

D1.1 5G Requirements for M2M

3. List of Acronyms

3GPP	3 rd Generation Partnership Project
5G	fifth Generation
CAGR	Compound Annual Growth Rate
EC-GPRS	Extended Coverage GPRS
eMBB	enhanced Mobile BroadBand
eMTC	Enhanced Machine-Type Communications
IMT 2020	International Mobile Telecommunications for 2020
loT	Internet of Things
ITU-R	International Telecommunication Union - Radiocommunication Sector
LoRaWAN	Long Range Wide Area Network
LTE-M	Long-Term Evolution for Machines
M2M	Machine-to-Machine
mMTC	massive Machine Type Communications
МТС	Machine-Type Communications
NB-IoT	Narrow Band-IoT
PTC	Positive Train Control
RAN	Radio Access Network
URLLC	Ultra-Reliable and Low Latency Communications

4. References

- Cisco Systems Inc, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019," 2015.
- [2] R. K. J. A. Gupta, "A Survey of 5G Network: Architecture and Emerging Technologies," *IEEE Access*, vol. 3, pp. 1206–123, 2015.
- [3] 3GPP, "TR 38.913 V14.1.0," 2016.
- [4] ITU-R, "Recommendation M.2083-0 (09/2015)," 2015.
- [5] E. Ab, "Cellular Networks for Massive IoT," 2016.
- [6] Keysight Technologies, "The Internet of Things: Enabling Technologies and Solutions

D1.1 5G Requirements for M2M

for Design and Test," 2015.

[7] 3GPP, "Feasibility Study on New Services and Markets Technology Enablers V14.2.0," 2016.